

US 20040239661A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2004/0239661 A1**
Jo (43) **Pub. Date:** **Dec. 2, 2004**

(54) **PIXEL CIRCUIT, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC APPARATUS**

(52) **U.S. Cl. 345/204**

(75) Inventor: **Hiroaki Jo, Suwa-shi (JP)**

(57) **ABSTRACT**

Correspondence Address:
OLIFF & BERRIDGE, PLC
P.O. BOX 19928
ALEXANDRIA, VA 22320 (US)

(73) Assignee: **SEIKO EPSON CORPORATION**,
Tokyo (JP)

(21) Appl. No.: **10/813,273**

(22) Filed: **Mar. 31, 2004**

(30) **Foreign Application Priority Data**

Mar. 31, 2003 (JP) 2003-095963

Publication Classification

(51) **Int. Cl. 7 G09G 5/00**

To prevent degradation of quality of a displayed image by maintaining the flow of current at a constant value even when organic EL elements are degraded, a pixel circuit includes a capacitor that accumulates, when a scanning line is selected, charge in accordance with current flowing through a data line; a TFT that allows, subsequent to the selection, current I_2 in accordance with the accumulated charge to flow between the source and drain of the TFT; an organic EL element whose anode is connected to the drain of the TFT; a TFT that detects a voltage applied to the organic EL element and allows current I_3 in accordance with the applied voltage to flow between the source and drain of the TFT; and a correction circuit that generates mirror current I_4 of the current I_3 and adds the current I_4 to the current I_2 .

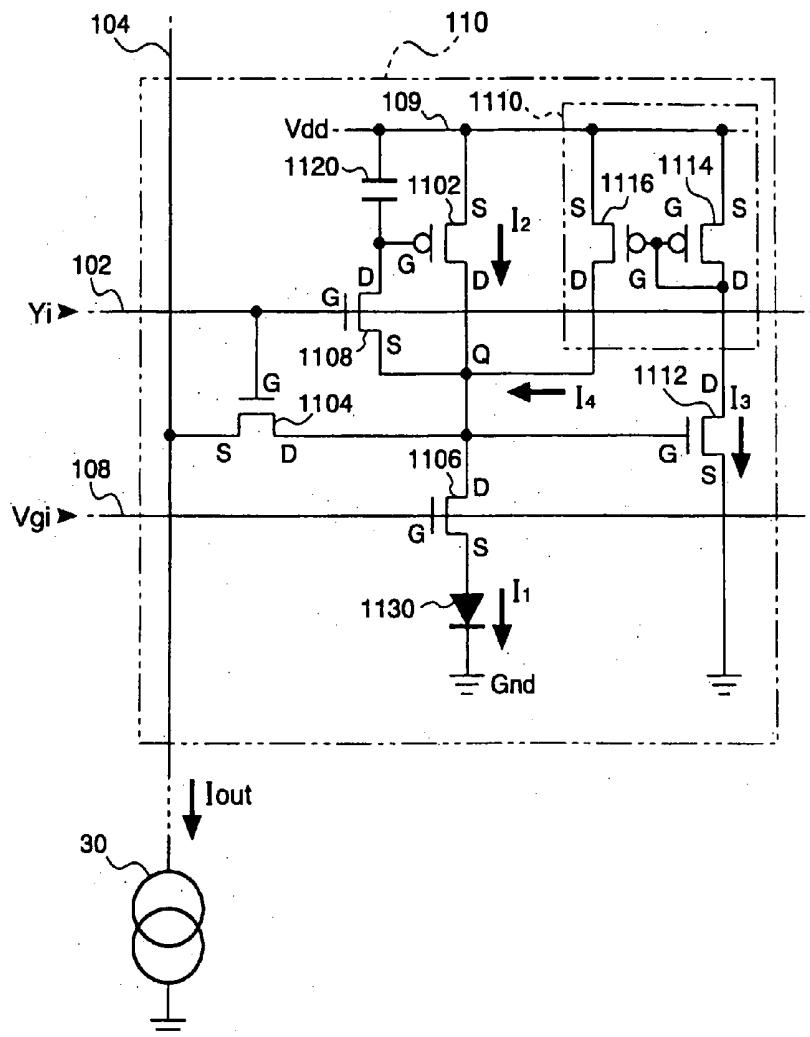


FIG.1

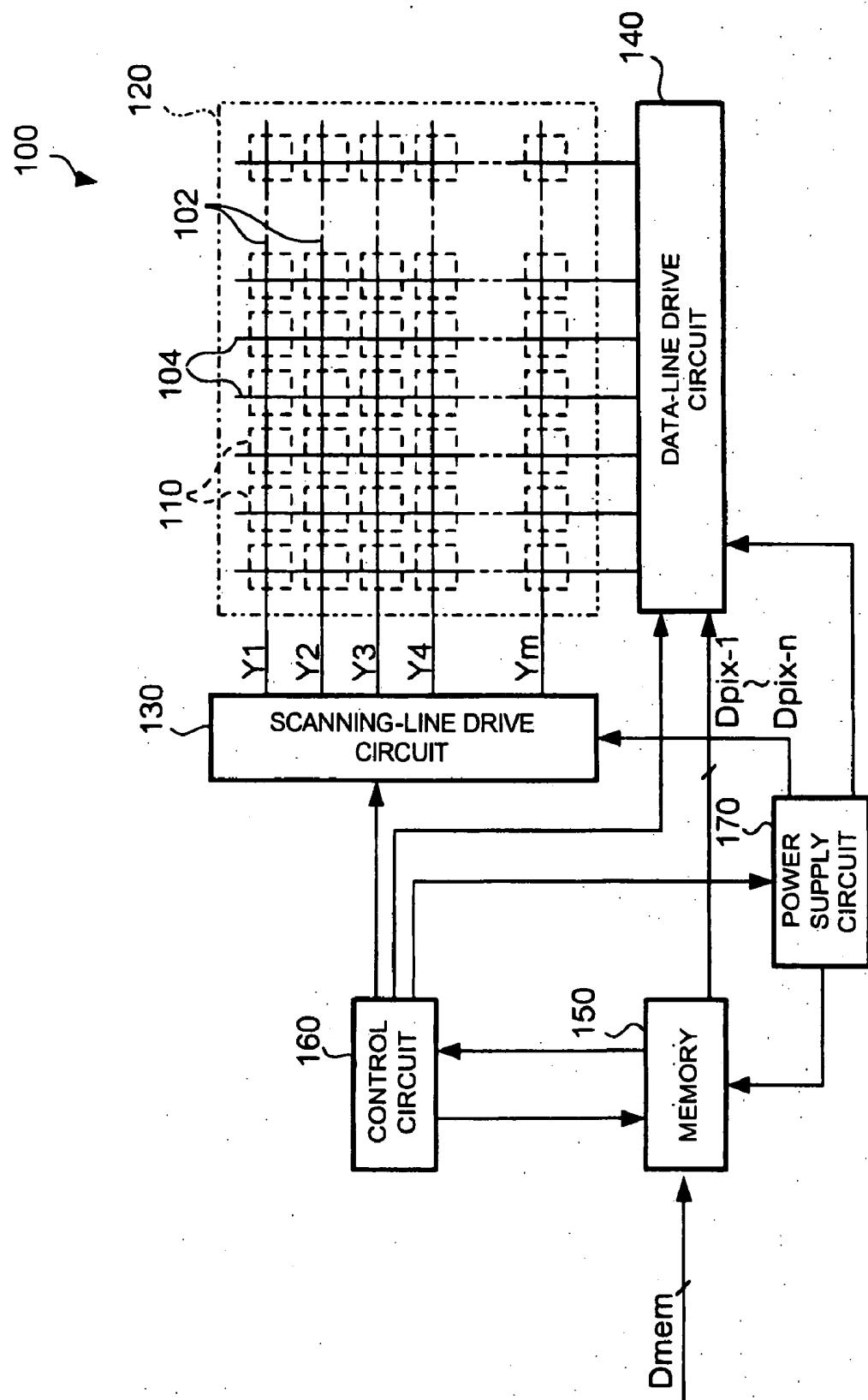


FIG.2

FIG.3

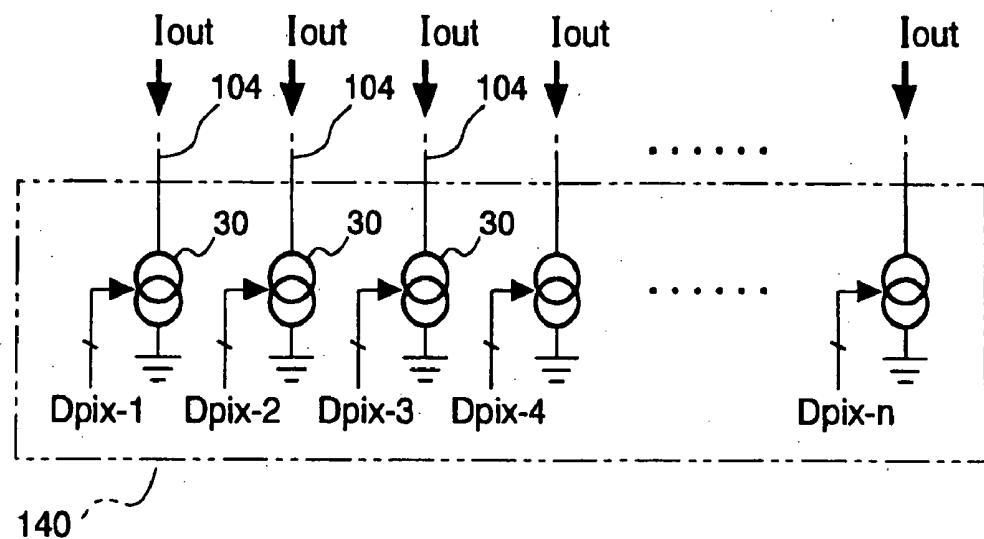


FIG.4

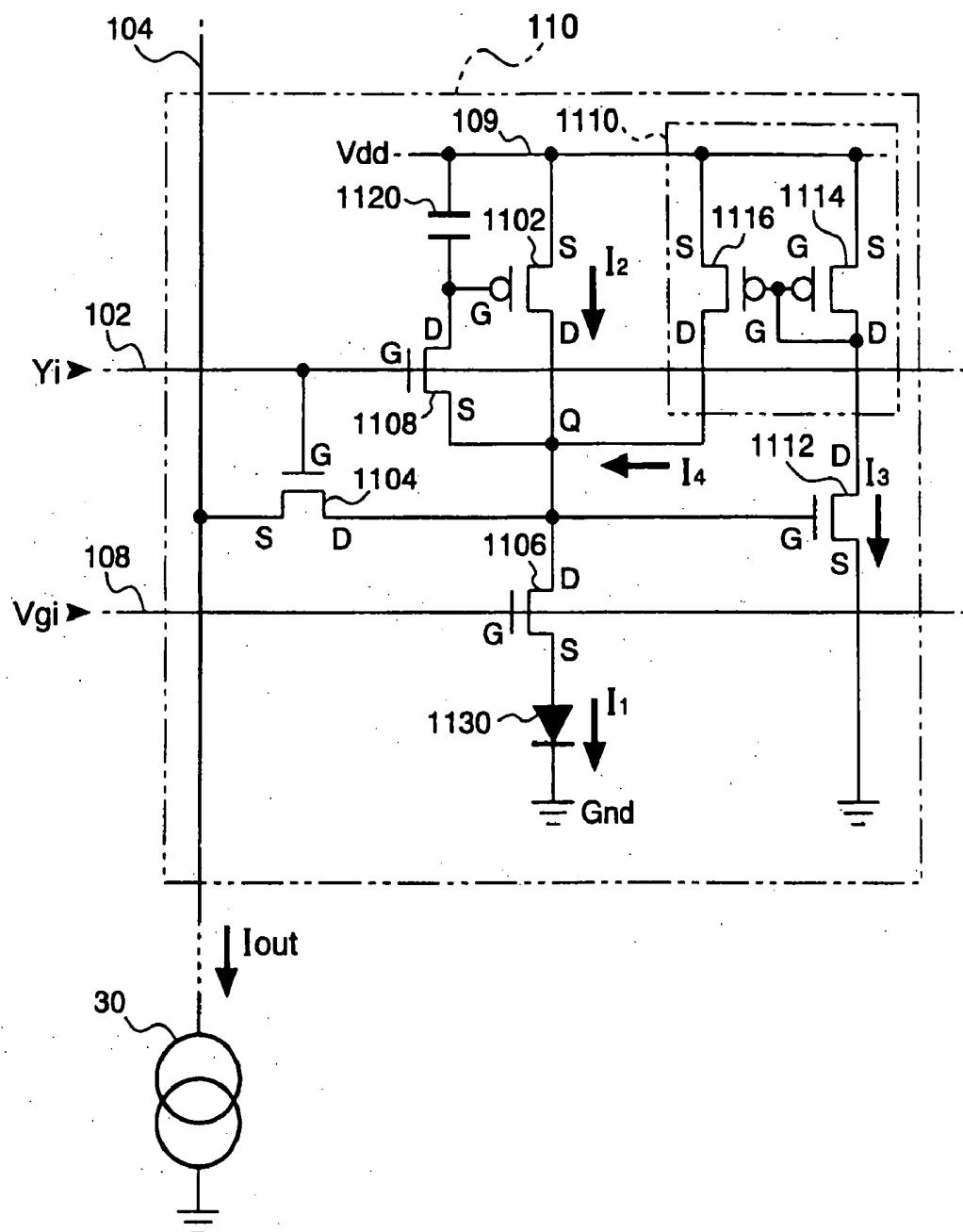


FIG.5

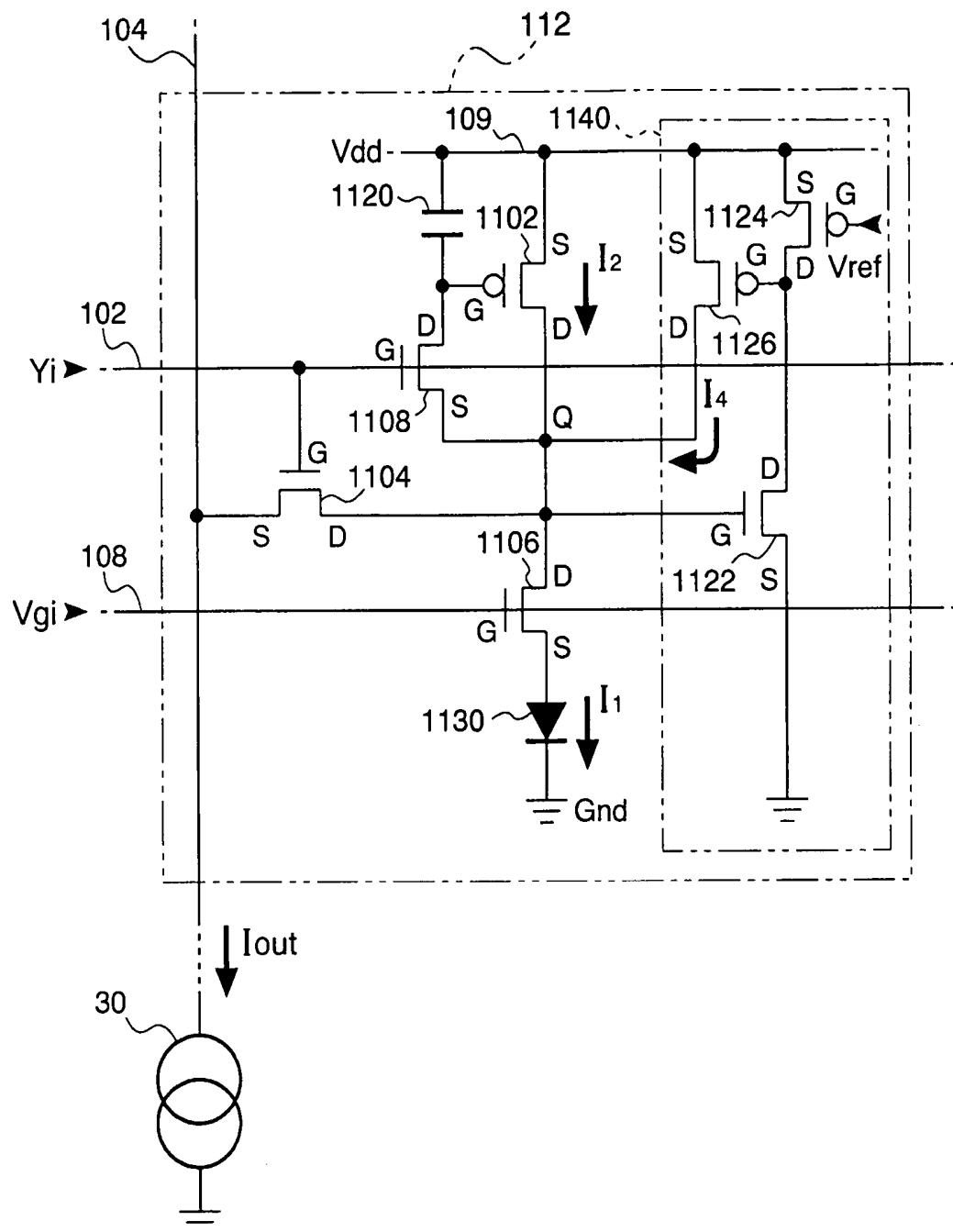
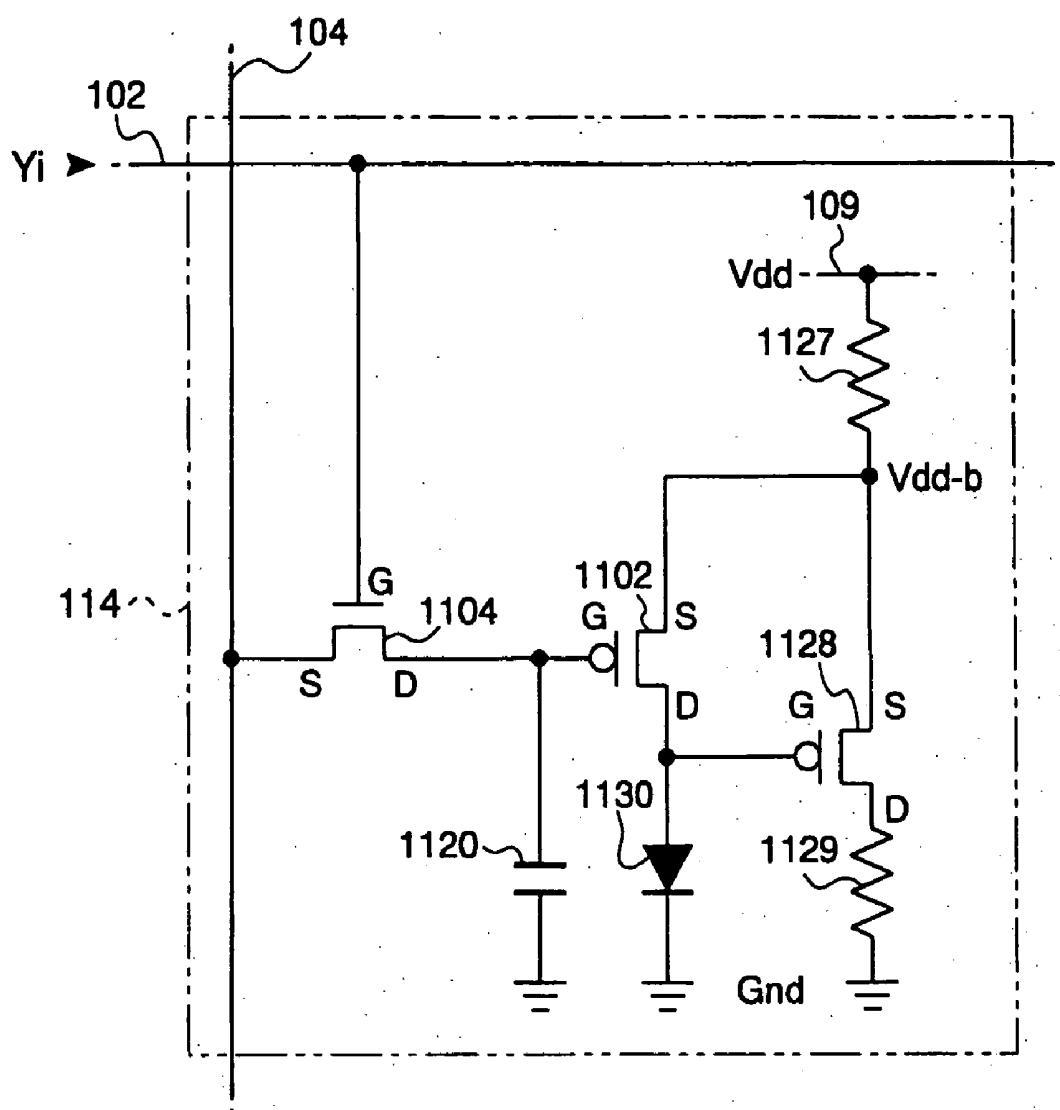



FIG.6

FIG.7

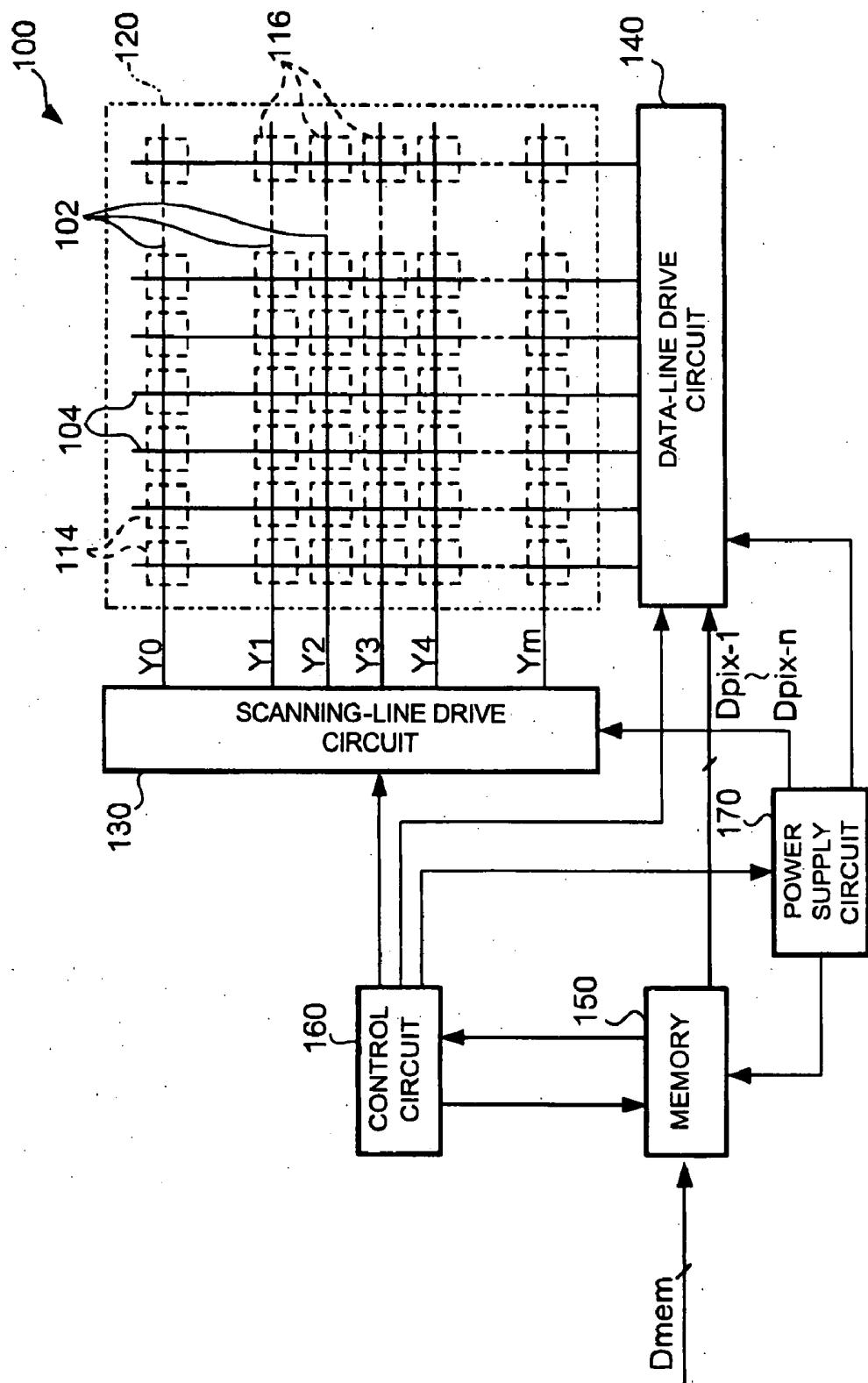


FIG.8

FIG.9

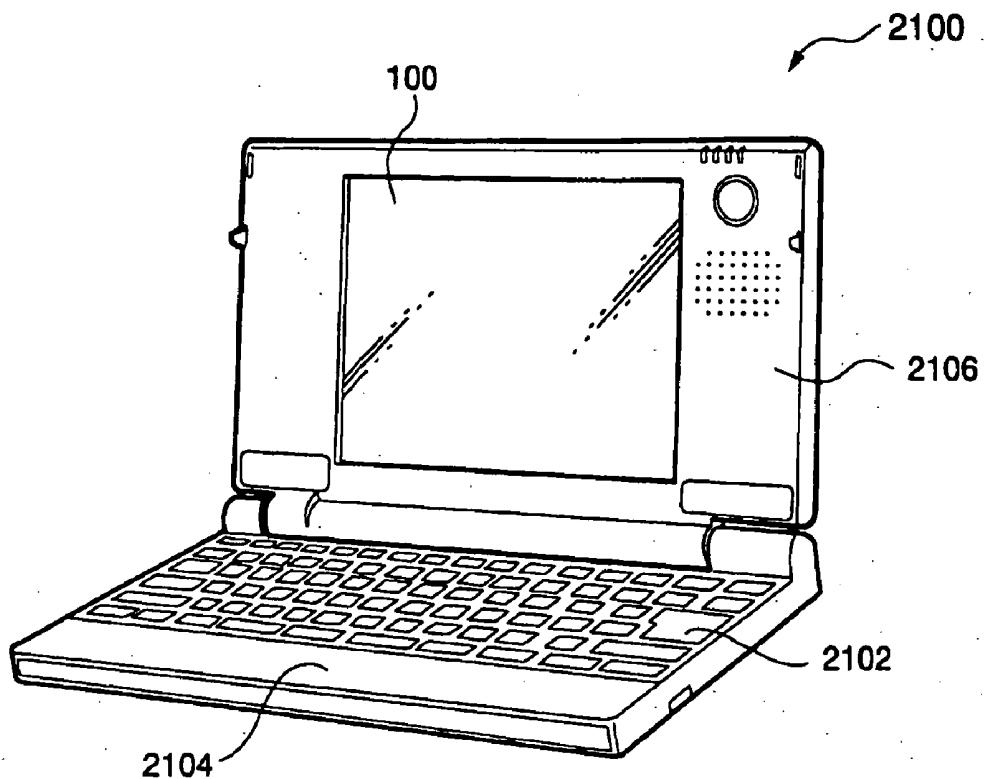


FIG.10

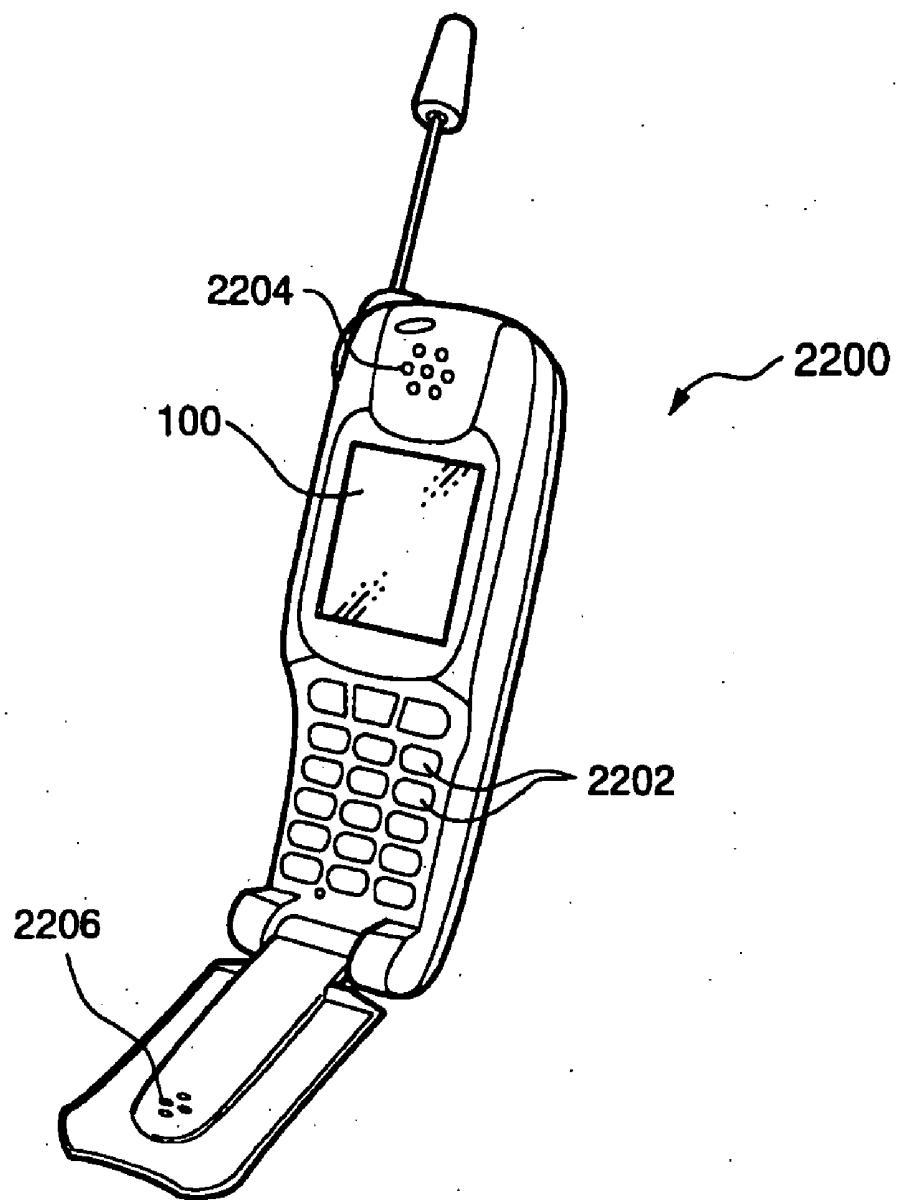
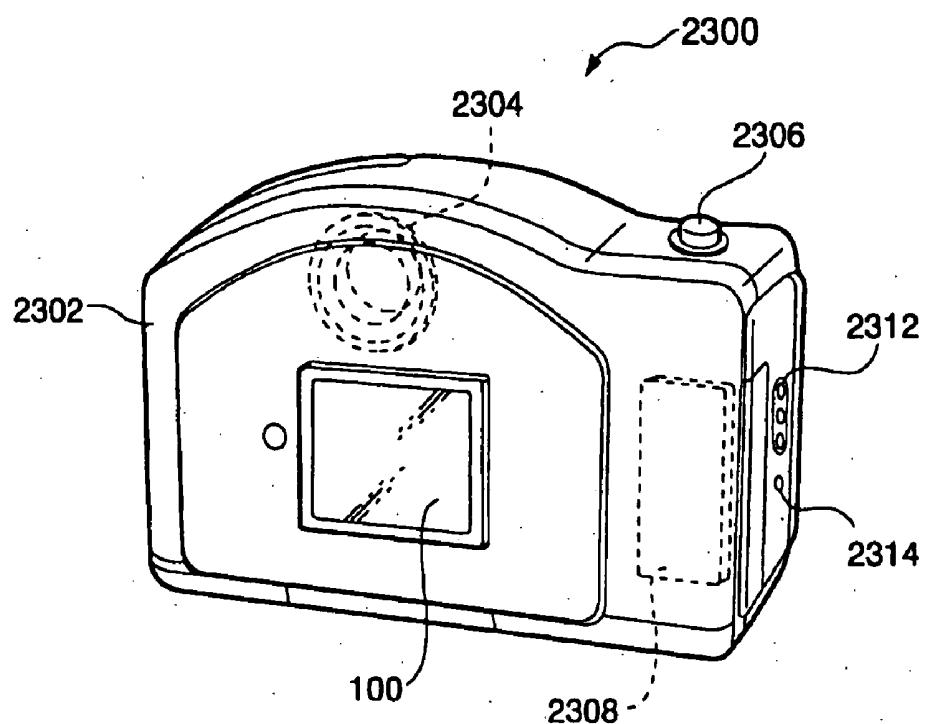



FIG.11

PIXEL CIRCUIT, ELECTRO-OPTICAL DEVICE, AND ELECTRONIC APPARATUS

BACKGROUND OF THE INVENTION

[0001] 1. Field of Invention

[0002] The present invention relates to pixel circuits to manage the aging of current-driven elements, such as organic EL (Electronic luminescence) elements, to electro-optical devices, and to electronic apparatuses.

[0003] 2. Description of Related Art

[0004] Recently, attention has been paid to organic EL elements serving as next-generation light-emitting devices to replace known LCD (Liquid Crystal Display) elements. Since the organic EL elements are natural light elements that emit light in proportion to current, the organic EL elements have less dependence on the angle of view and require no backlight, thereby consuming low power. The organic EL elements have superior characteristics to serve as a display panel.

[0005] Methods to drive the organic EL elements, as in the LCD elements, are largely classified into an active matrix method using active elements, such as thin film transistors (hereinafter "TFTs") and a passive matrix method not using such active elements. The former method or the active matrix method is regarded as superior because of low drive voltage and the like.

[0006] Unlike the LCD elements, the organic EL elements have no voltage-holding characteristics. Therefore, once the current flow stops, the organic EL elements cannot maintain a light-emitting state. To prevent such a problem, voltage is accumulated in each capacitor and current is allowed to flow continuously through each organic EL element by a drive transistor having a gate to which the accumulated voltage is applied. See International Publication WO98/36406 Pamphlet.

SUMMARY OF THE INVENTION

[0007] The organic EL elements tend to be degraded due to aging or the like. Specifically, the necessary voltage to allow a constant current to flow through the organic EL elements tends to increase in accordance with time. Due to such a voltage increase, the current flowing through the organic EL elements is reduced below a target value. As a result, the organic EL elements cannot emit light with sufficient brightness, thereby degrading the quality of a displayed image. Incidentally, the necessary voltage to allow the constant current to flow through the organic EL elements also changes due to changes in ambient temperature.

[0008] In view of these circumstances, the present invention provides a pixel circuit capable of reducing or preventing degradation of the quality of a displayed image even when the necessary voltage to allow a constant current to flow through current-driven elements, such as organic EL elements changes due to degradation or ambient temperature, and to provide an electro-optical device and an electronic apparatus.

[0009] In order to achieve the foregoing, a pixel circuit according to an aspect of the present invention is a pixel circuit disposed at the intersection of a scanning line and a data line. The pixel circuit includes a capacitor that accu-

mulates, when the scanning line is selected, charge in accordance with current flowing through the data line or voltage on the data line; a drive transistor being turned ON/OFF in accordance with the charge accumulated in the capacitor, the drive transistor allowing current to flow between a first terminal and a second terminal of the drive transistor; a driven element whose one end is electrically connected to the first terminal, the driven element being driven at least by the current allowed to flow by the drive transistor; a detector that detects voltage at one end of the driven element; and a correction circuit that corrects the current flowing through the driven element in accordance with the absolute value of the voltage detected by the detector. According to this structure, since the current by the drive transistor is corrected by the correction circuit, the current flowing through the driven element is made substantially equal to a target value or the current flowing through the data line or the current associated with the voltage on the data line even when the driven element becomes degraded.

[0010] In this structure, the correction circuit may generate current in accordance with the voltage detected by the detector and may add the generated current to the current allowed to flow by drive transistor. When the current is added in this manner, the detector may be a detection transistor whose gate is connected to one end of the driven element, the detection transistor being turned ON/OFF in accordance with the gate voltage thereof, and the detection transistor allowing current to flow between a third terminal and a fourth terminal thereof. The correction circuit may generate current associated with current flowing between a first terminal and a second terminal of the detection transistor. In this case, the correction circuit may be a current mirror circuit that generates a mirror current of the current flowing between the third terminal and the fourth terminal. Incidentally, the mirror current includes current of the same value as that flowing between the third terminal and the fourth terminal and current in equal ratio of that flowing between the third terminal and the fourth terminal.

[0011] When the current is added, the correction circuit may invert and amplify the voltage detected by the detector and may apply the inverted, amplified voltage to the driven element. When the current is added, the pixel circuit may further include a switch whose one end is connected to the first terminal and whose other end is connected to one end of the driven element, the switch controlling the connection between the drive transistor and the driven element when the scanning line is unselected. The detector may detect voltage at one end of the switch, and the correction circuit may allow the generated current to flow through one end of the switch.

[0012] In this structure, the pixel circuit may further include a switching transistor being turned ON when the scanning line is selected; and a compensation transistor for diode-connecting the drive transistor when the scanning line is selected. The capacitor may accumulate, when the switching transistor is turned ON, the charge in accordance with the current flowing through the data line. The pixel circuit may further include a switching transistor being turned ON when the scanning line is selected. The capacitor may accumulate, when the switching transistor is turned ON, the charge in accordance with the voltage on the data line.

[0013] According to an aspect of the present invention, advantages similar to those achieved by the structure in

which the current is added may be achieved also by voltage adjustment. For example, in this structure, the correction circuit may adjust, when the absolute value of the voltage detected by the detector is large, voltage between the first terminal or the second terminal of the drive transistor and the other end of the driven element by increasing the voltage in terms of absolute value.

[0014] In order to achieve the foregoing, another pixel circuit according to an aspect of the present invention is a pixel circuit including a drive transistor whose gate is connected to one end of a capacitor, and the connection between a first terminal and a second terminal of the drive transistor being set in accordance with charge accumulated in the capacitor; a driven element whose one end is electrically connected to the first terminal; a detector that detects voltage at one end of the driven element; and a correction circuit including an input end to receive a signal indicating the voltage detected by the detector and an output end electrically connected to the first terminal, the correction circuit supplying current in accordance with the absolute value of the voltage indicated by the signal input to the input end to the output end. With this structure, since the current by the drive transistor is corrected by the correction circuit, the current flowing through the driven element is made substantially equal to a target value or the current flowing through the data line or the current associated with the voltage on the data line even when the driven element becomes degraded.

[0015] In this structure, the detector may be a detection transistor whose gate is connected to one end of the driven element, and the connection between a third terminal and a fourth terminal of the detection transistor may be set in accordance with the gate voltage thereof.

[0016] When using such a detection transistor, the correction circuit may include a first transistor whose fifth terminal is connected to the gate, whose sixth terminal is connected to a power-supply-voltage feed line, and the fifth terminal is connected to the third terminal; and a second transistor whose gate is connected to the gate of the first transistor and the fifth terminal, whose seventh terminal is electrically connected to the first terminal, and whose eighth terminal is connected to the feed line. Alternatively, the correction circuit may include a third transistor, a reference voltage being applied to the gate thereof, a ninth terminal thereof being connected to the third terminal, and a tenth terminal thereof being connected to a power-supply-voltage feed line; and a fourth transistor whose gate is connected to the ninth terminal, whose eleventh terminal is electrically connected to the first terminal, and whose twelfth terminal is connected to the feed line.

[0017] The pixel circuit may further include a switch whose one end is connected to the first terminal, and whose other end is connected to one end of the driven element. The detector may detect voltage at one end of the switch. The pixel circuit may further include a compensation transistor that short-circuits between the gate of the drive transistor and the first terminal. The capacitor may accumulate charge in accordance with the voltage at the first terminal when the compensation transistor short-circuits between the gate of the drive transistor and the first terminal.

[0018] In order to achieve the foregoing, a first electro-optical device according to an aspect of the present invention

includes a plurality of data lines, a plurality of scanning lines, and a plurality of pixel circuits described above, the pixel circuits being disposed at the intersections of the plural data lines and the plural scanning lines.

[0019] In order to achieve the foregoing, a second electro-optical device according to an aspect of the present invention includes pixel circuits disposed at the intersections of a plurality of scanning lines and a plurality of data lines, the pixel circuits including driven elements; a scanning-line drive circuit that selects the scanning lines one at a time; and a data-line drive circuit that supplies, when the scanning line is selected by the scanning-line drive circuit, current that is to flow through the driven element of each corresponding pixel circuit associated with the scanning line or voltage associated with the current via each corresponding data line. Each of the pixel circuits includes a capacitor that accumulates, when the corresponding scanning line is selected, charge in accordance with current flowing through the corresponding data line or voltage on the corresponding data line; a drive transistor being turned ON/OFF in accordance with the charge accumulated in the capacitor, the drive transistor allowing current to flow between a first terminal and a second terminal of the drive transistor; a driven element whose one end is electrically connected to the first terminal, the driven element being driven by at least the current allowed to flow by the drive transistor; a detector that detects voltage at one end of the driven element; and a correction circuit that corrects the current flowing through the driven element in accordance with the absolute value of the voltage detected by the detector. According to this structure, since the current by the drive transistor is corrected by the correction circuit, the current flowing through the driven element is made substantially equal to a target value or the current flowing through the data line or the current associated with the voltage on the data line even when the driven element becomes degraded.

[0020] Preferably, an electronic apparatus according to an aspect of the present invention includes this electro-optical device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] FIG. 1 is a block schematic of an electro-optical device according to an exemplary embodiment of the present invention;

[0022] FIG. 2 is an operation chart of a scanning-line drive circuit of the electro-optical device;

[0023] FIG. 3 is a schematic showing a data-line drive circuit of the electro-optical device;

[0024] FIG. 4 is a schematic showing a pixel circuit of the electro-optical device;

[0025] FIG. 5 is a schematic showing another example of the pixel circuit;

[0026] FIG. 6 is a schematic showing another example of the pixel circuit;

[0027] FIG. 7 is a block schematic of an electro-optical device including other examples of pixel circuits;

[0028] FIG. 8 is a schematic showing the pixel circuits of the electro-optical device;

[0029] **FIG. 9** is an illustration of a personal computer including the electro-optical device;

[0030] **FIG. 10** is an illustration of a cellular phone including the electro-optical device; and

[0031] **FIG. 11** is an illustration of a digital still camera including the electro-optical device.

DETAILED DESCRIPTION OF PREFERRED EXEMPLARY EMBODIMENTS

[0032] With reference to the figures, the exemplary embodiments of the present invention will be described. Electro-optical Device

[0033] **FIG. 1** is a block schematic showing the structure of an electro-optical device according to an exemplary embodiment.

[0034] As shown in the figure, an electro-optical device **100** includes a display panel **120** provided with m scanning lines **102** and n data lines **104**, which are orthogonal to each other (electrically insulated from each other), and pixel circuits **110** disposed at the intersections of the scanning lines **102** and the data lines **104**; a scanning-line drive circuit **130** that drives the individual scanning lines **102**; a data-line drive circuit **140** that drives the individual data lines **104**; a memory **150** to store digital data D_{mem} which is supplied from an external device, such as a computer, and which defines the gray levels of individual pixels of an image to be displayed; a control circuit **160** that controls each part; and a power supply circuit **170** that supplies power to each part.

[0035] The scanning-line drive circuit **130** generates scan signals $Y_1, Y_2, Y_3, \dots, Y_m$ to select the scanning lines **102** one at a time, in turn. Specifically, as shown in **FIG. 2**, the scanning-line drive circuit **130** supplies, as the scan signal Y_1 , a pulse having a width corresponding to one horizontal scan period (1 H) starting from the beginning of a vertical scan period (1 F) to the first scanning line **102**. From this point onward, the scanning-line drive circuit **130** sequentially shifts this pulse and supplies the resultant pulse as the scan signals Y_2, Y_3, \dots, Y_m to the second, third, \dots, m -th scanning lines **102**, respectively. In general, when the scan signal Y_i supplied to the i -th scanning line **102** (where i is an integer that satisfies $1 \leq i \leq m$) becomes an H level, it means that this scanning line **102** is selected.

[0036] In addition to the scan signals $Y_1, Y_2, Y_3, \dots, Y_m$, the scanning-line drive circuit **130** generates light-emitting control signals $Vg_1, Vg_2, Vg_3, \dots, Vg_m$ by inverting the logical level of the scan signals $Y_1, Y_2, Y_3, \dots, Y_m$ and supplies the light-emitting control signals $Vg_1, Vg_2, Vg_3, \dots, Vg_m$ to the display panel **120**. Signal lines to which these light-emitting control signals are supplied are not shown in **FIG. 1**.

[0037] The control circuit **160** controls selection of the scanning line **102** by the scanning-line drive circuit **130** and, in synchronization with the selection of the scanning line **102**, reads digital data D_{pix-1} to D_{pix-n} associated with the first to n -th data lines **104** and supplies the digital data D_{pix-1} to D_{pix-n} to the data-line drive circuit **140**.

[0038] As shown in **FIG. 3**, the data-line drive circuit **140** has current generation circuits **30** associated with the individual data lines **104**. In general, the digital data D_{pix-j} associated with the intersection of the selected scanning line

102 and the j -th data line **104** is supplied to the j -th current generation circuit **30** (where j is an integer that satisfies $1 \leq j \leq n$). This current generation circuit **30** generates current I_{out} in accordance with the digital value of the supplied digital data D_{pix-j} and allows this current I_{out} to flow through the corresponding j -th data line **104**. For example, the current generation circuit **30** associated with the third data line **104** generates current I_{out} in accordance with the digital value of the digital data D_{pix-3} associated with the intersection of the selected scanning line **102** and the third data line **104** and allows this current I_{out} to flow through the third data line **104**.

[0039] In the electro-optical device **100**, the elements denoted by reference numerals **120, 130, 140, 150, 160**, and **170** may be independent elements. Alternatively, some or all of the elements may be integrated (e.g., the scanning-line drive circuit **130** and the data-line drive circuit **140** may be integrated; or some or all of the elements excluding the display panel **120** may be implemented using a programmable IC chip, and functions of these elements may be implemented in terms of software by a program written in the IC chip). These elements may be commercially available in various forms. Pixel Circuit

[0040] The pixel circuits **110** in the electro-optical device **100** will now be described. **FIG. 4** is a circuit schematic of the structure of one pixel circuit **110**. In this exemplary embodiment, all the pixel circuits **110** have the same structure. To describe one typical pixel circuit **110**, the pixel circuit **110** disposed at the intersection of the i -th scanning line **102** and the j -th data line **104** will now be described.

[0041] As shown in this schematic, the pixel circuit **110** disposed at the intersection of this scanning line **102** and this data line **104** includes seven thin-film transistors (hereinafter "TFTs") **1102, 1104, 1106, 1108, 1112, 1114**, and **1116**; a capacitor **1120**; and an organic EL element **1130**. Of these elements, the TFTs **1114** and **1116** are included in a correction circuit **1110** described later.

[0042] In the pixel circuit **110**, the source of the p-channel TFT (drive transistor) **1102** is connected to a power line **109** to which voltage V_{dd} , which is a higher potential of the power supply, is applied. At the same time, the drain of the TFT **1102** is connected to Q point, that is, the drain of the n-channel TFT (switching transistor) **1104**, the drain of the n-channel TFT (lighting switch) **1106**, the source of the n-channel TFT (compensation transistor) **1108**, the gate of the n-channel TFT **1112**, and the drain of the p-channel TFT **1116**.

[0043] One end of the capacitor **1120** is connected to the power line **109**, whereas the other end of the capacitor **1120** is connected to the gate of the TFT **1102** and the drain of the TFT **1108**. The capacitor **1120** is provided to maintain the gate voltage of the TFT **1102** when the scanning line **102** is selected, which will be described below. Since one end of the capacitor **120** is only required to be at a constant potential, this end may be grounded, instead of being connected to the power line **109**.

[0044] The gate of the TFT **1104** is connected to the scanning line **102**, and the source of the TFT **1104** is connected to the data line **104**. The gate of the TFT **1108** is connected to the scanning line **102**.

[0045] At the same time, the gate of the TFT **1106** is connected to a light-emitting control line **108**, whereas the

source of the TFT **1106** is connected to the anode of the organic EL element **1130**. The scanning-line drive circuit **130** supplies the light-emitting control signal V_{gi} to the light-emitting control line **108**. The organic EL element **1130** includes an organic EL layer held between the anode and the cathode and emits light with brightness in accordance with forward current. The cathode of the organic EL element **1130** serves as a common electrode for all the pixel circuits **110** and is grounded at lower (reference) voltage Gnd of the power supply.

[0046] The source of the TFT **1112** is grounded at the lower voltage Gnd . At the same time, the source of the p-channel TFT **1114** included in the correction circuit **1110** is connected to the power line **109**. The drain and gate of the TFT **1114** are commonly connected to the drain of the TFT **1112**. At the same time, the source of the TFT **1116** is connected to the power line **109**, whereas the gate of the TFT **1116** is connected to the common connection of the drain and gate of the TFT **1114**.

[0047] Since the drain and gate of the TFT **1114** are commonly connected, the TFT **1114** functions as a diode. Since the gate of the TFT **1116** is connected to the common connection of the drain and gate of the TFT **1114**, the TFTs **1114** and **1116** have the same transistor characteristics (current gain). In such a case, the TFTs **1114** and **1116** function as a current mirror circuit that allows mirror current I_4 , which is the same as current I_3 flowing between the source and drain of the TFT **1114** (**1112**), to flow between the source and drain of the TFT **1116**.

[0048] The operation of the pixel circuit **110**, assuming that there is no correction circuit **1110**, will now be described.

[0049] When the i-th scanning line **102** is selected, and when the scan signal Y_i becomes an H level, the source and drain of the n-channel TFT **1108** are electrically connected (turned ON). As a result, the TFT **1102**, whose gate and drain are interconnected, functions as a diode. When the scan signal Y_i supplied to the scanning line **102** becomes an H level, the n-channel TFT **1104** enters a conducting state (ON), as in the TFT **1108**. As a result, the current I_{out} generated by the current generation circuit **30** flows through the power line **109**, the TFT **1102**, the TFT **1104**, and the data line **104** in this order, and charge in accordance with the gate voltage of the TFT **1102** is accumulated in the capacitor **1120**.

[0050] When the selection of the i-th scanning line **102** is terminated and the i-th scanning line **102** becomes unselected, and when the scan signal Y_i becomes an L level, both the TFTs **1104** and **1108** enter a non-conducting state (OFF). Since the charge accumulated in the capacitor **1120** remains unchanged, the gate of the TFT **1102** is maintained at the voltage when the current I_{out} has flowed through the TFT **1102**.

[0051] When the scan signal Y_i becomes the L level, the light-emitting control signal V_{gi} becomes an H level. As a result, the n-channel TFT **1106** is turned ON, and current in accordance with the gate voltage of the TFT **1102** flows between the source and drain of the TFT **1102**. Specifically, this current flows through the power line **109**, the TFT **1102**, the TFT **1106**, and the organic EL element **1130** in this order. Accordingly, the organic EL element **1130** emits light with brightness in accordance with the current value.

[0052] First, the current flowing through the organic EL element **1130** is determined by the gate voltage of the TFT **1102**. This gate voltage is the voltage maintained by the capacitor **1120** when the current I_{out} has flowed through the data line **104** in response to the H-level scan signal. When the light-emitting control signal V_{gi} becomes the H level, ideally the current flowing through the organic EL element **1130** substantially agrees with the current I_{out} flowing through the organic EL element **1130** immediately before the light-emitting control signal V_{gi} becomes the H level.

[0053] However, since the structure includes no correction circuit **1110**, the current flowing through the organic EL element **1130** when the light-emitting control signal V_{gi} becomes the H level disagrees with the current I_{out} generated by the current generation circuit **30** due to reasons described below.

[0054] Specifically, the current I_{out} generated by the current generation circuit **30** is a target value when the organic EL element **1130** is not degraded. Actually, when the organic EL element **1130** is degraded due to the time elapsed since manufacture, the necessary voltage to allow a constant current to flow through the organic EL element **1130** is increased. When the voltage between the terminals of the organic EL element **1130** is increased due to degradation, the voltage between the source and drain of the TFT **1102** is reduced by that amount. The current between the source and drain of a TFT is very apt to depend on the voltage between the source and drain of the TFT even in a saturation region.

[0055] When the light-emitting control signal V_{gi} becomes the H level, and when the TFT **1106** is turned ON, the voltage between the source and drain of the TFT **1102** is reduced below the value when the scan signal Y_i becomes the H level and when the TFT **1104** is turned ON. Therefore, the current flowing through the organic EL element **1130** is insufficient compared to the target value, that is, the current I_{out} .

[0056] With the structure including no correction circuit **1110**, therefore, the current flowing through the organic EL element **1130** when the light-emitting control signal V_{gi} becomes the H level is reduced below the current I_{out} generated by the current generation circuit **30**. Accordingly, the current flowing through the organic EL element **1130** disagrees with the target value, that is, the current I_{out} .

[0057] The present exemplary embodiment including the correction circuit **1110** will now be described. Since the gate of the TFT **1112** is connected to the drain of the TFT **1102**, the current I_3 flowing between the source and drain of the TFT **1112** is increased when the voltage between the source and drain of the TFT **1102** is reduced due to degradation of the organic EL element **1130**.

[0058] As described above, since the TFTs **1114** and **1116** function as the current mirror circuit, the current I_4 flowing between the source and drain of the TFT **1116** agrees with the current I_3 . This current I_4 is added to current I_2 flowing through the TFT **1102** at Q point, thereby allowing the sum of the current I_4 and the current I_2 to flow through the organic EL element **1130**.

[0059] According to the present exemplary embodiment, when the light-emitting control signal V_{gi} becomes the H level, and when the current I_2 flowing between the source and drain of the TFT **1102** is reduced below the current I_{out}

generated by the current generation circuit **30** due to degradation of the organic EL element **1130**, insufficient current is compensated for by the current I_4 . Accordingly, current I_1 flowing through the organic EL element **1130** is made substantially equal to the target value, that is, the current I_{out} . Even when there is a change in ambient temperature, the current flowing through the organic EL element **1130** is similarly made substantially equal to the current I_{out} .

[0060] Even when the TFTs **1102** of all the pixel circuits **110** have variations in characteristics, the same amount of current can be supplied to the organic EL elements **1130** included in the pixel circuits **110**. Therefore, display unevenness due to these variations is suppressed.

[0061] One pixel circuit **110** has been described above. Since the i -th scanning line **102** is shared by m pixel circuits **110**, these m pixel circuits **110** sharing the i -th scanning line **102** operate in a similar manner when the scan signal Y_i becomes the H level.

[0062] As shown in **FIG. 2**, the scan signals $Y_1, Y_2, Y_3, \dots, Y_m$ exclusively become the H level in turn. As a result, all the pixel circuits **110** operate in a similar manner, thereby displaying an image in one frame. This display operation is repeated every vertical scan period.

[0063] In the pixel circuit **110** shown in **FIG. 4**, the TFTs **1114** and **1116** have the same transistor characteristics. Alternatively, the TFTs **1114** and **1116** may have different current gains (β). When β_1 and β_2 are the current gains of the TFTs **1114** and **1116**, the current I_4 is β_2/β_1 times the current I_3 .

[0064] Example of Pixel Circuit

[0065] According to an aspect of the present invention, the structure of each pixel circuit **110** is not limited to that shown in **FIG. 4**. Each pixel circuit **110** may have various structures. For example, a TFT **1122** to detect the drain voltage of the TFT **1102** and the correction circuit **1110** to generate the current I_4 associated with the detected drain voltage and adding the current I_4 to the current I_2 flowing through the TFT **1102** are not limited to the structures shown in **FIG. 4**. Alternatively, an inverting amplifier may be used.

[0066] **FIG. 5** is a schematic showing the structure of a pixel circuit **112** including such an inverting amplifier. In this schematic, an inverting amplifier **1140** includes the n-channel TFT **1122** and p-channel TFTs **1124** and **1126**. Of these TFTs, the gate of the TFT **1122** is connected to Q point, and the source of the TFT **1122** is grounded. A reference voltage V_{ref} is supplied to the gate of the TFT **1124**. The source of the TFT **1124** is connected to the power line **109**, and the drain of the TFT **1124** is connected to the drain of the TFT **1122** and the gate of the TFT **1126**. The source of the TFT **1126** is connected to the power line **109**, and the drain of the TFT **1126** is connected to Q point. Specifically, in the inverting amplifier **1140**, the gate of the TFT **1122** serves as the input, and the drain of the TFT **1126** serves as the output.

[0067] In the inverting amplifier **1140**, when the drain voltage of the TFT **1102** is increased due to degradation of the organic EL element **1130** (when the absolute value of the voltage between the source and drain of the TFT **1102** is reduced), the ON-resistance of the TFT **1122** is reduced, thereby reducing the voltage at the voltage dividing point

between the TFTs **1122** and **1124**, that is, the gate voltage of the TFT **1126**. As a result, the current I_4 flowing between the source and drain of the TFT **1126** is increased. Therefore, in the pixel circuit **112** shown in **FIG. 5**, as in the pixel circuit **110** including the current mirror circuit, the current I_1 flowing through the organic EL element **1130** is made substantially equal to the target value, that is, the current I_{out} .

[0068] With this structure, compared with the current mirror circuit shown in **FIG. 4**, the ratio of the current I_4 to the insufficient current may be adjusted a posteriori by setting the gate voltage V_{ref} of the TFT **1124**. **651** The light-emitting control signals $V_{g1}, V_{g2}, V_{g3}, \dots, V_{gm}$ in **FIG. 4** or **5** are described as being generated by inverting the logical level of the corresponding scan signals $Y_1, Y_2, Y_3, \dots, Y_m$. Alternatively, periods in which the light-emitting control signal $V_{g1}, V_{g2}, V_{g3}, \dots, V_{gm}$ reach an active level (H level) may be narrowed at the same time. Alternatively, the light-emitting control signals $V_{g1}, V_{g2}, V_{g3}, \dots, V_{gm}$ may be supplied by a circuit other than the scanning-line drive circuit **130** (see **FIG. 1**).

[0069] In the pixel circuit **110** shown in **FIG. 4** or the pixel circuit **112** shown in **FIG. 5**, it has been described that, when the scanning line **102** is selected, current in accordance with the digital value of digital data, that is, the current I_{out} in accordance with the brightness, is supplied to each corresponding data line **104**. Alternatively, voltage in accordance with the brightness may be applied to each corresponding data line **104**. Even with this structure, the gate voltage of the TFT **1102** is maintained in the capacitor **1120**. As a result, advantages equivalent to those achieved by the structure in which the current I_{out} in accordance with the brightness is supplied are achieved.

[0070] Another Example of Pixel Circuit

[0071] In the structures shown in **FIGS. 4 and 5**, when the scanning line **102** is selected, current in accordance with the brightness of the organic EL element **1130** is allowed to flow through each corresponding data line **104**. Alternatively, voltage in accordance with the brightness of the organic EL element **1130** may be applied to each corresponding data line **104**.

[0072] In the structures shown in **FIGS. 4 and 5**, when the drain voltage of the TFT **1102** driving the organic EL element **1130** is increased, the current I_4 associated with this drain voltage is generated, and the current I_4 is added to the current I_2 flowing through the TFT **1102**. Alternatively, the source voltage of the TFT **1102** may be increased in accordance with the drain voltage of the TFT **1102**.

[0073] **FIG. 6** shows a case in which voltage in accordance with the brightness of the organic EL element **1130** is applied to the data line **104**. Specifically, **FIG. 6** is a schematic showing the structure of a pixel circuit **114** in which the source voltage of the TFT **1102** driving the organic EL element **1130** is increased in accordance with the drain voltage of the TFT **1102** driving the organic EL element **1130**.

[0074] In this schematic, a resistor **1127**, a p-channel TFT **1128**, and a resistor **1129** are connected in series between the power line **109** and a ground wire. The source of the TFT **1102** driving the organic EL element **1130** is connected to the node between the resistor **1127** and the source of the TFT

1128, that is, the voltage dividing point between the power line **109** and the ground wire. At the same time, the gate of the TFT **1128** is connected to the drain of the TFT **1102**.

[0075] Since the voltage in accordance with the brightness of the organic EL element **1130** is applied to each corresponding data line **104**, the data-line drive circuit **140** (see **FIG. 3**) does not include the current generation circuits **30**, but includes voltage generation circuits to generate voltages in accordance with the digital data Dpix-1 to Dpix-n, the voltage generation circuits being associated with the individual data lines **104** (not shown). As described above, one end of the capacitor **1120** may be grounded, as shown in **FIG. 6**.

[0076] Since the pixel circuit **114** includes no TFT **1106**, which is provided in the pixel circuits **110** and **112** (see **FIGS. 4 and 5**) and which is for turning ON the organic EL element **1130** when the scanning line **102** is unselected, the drain of the TFT **1102** is directly connected to the organic EL element **1130**. Therefore, the drain voltage of the TFT **1102** is equal to the voltage applied to the organic EL element **1130**. **731** With this structure, when the scanning line **102** is selected, the TFT **1104** is turned ON. As a result, the voltage on the data line **104** is applied to the gate of the TFT **1102**. Therefore, current in accordance with the voltage applied to the data line **104** flows through the power line **109**, the resistor **1127**, the TFT **1102**, and the organic EL element **1130** in this order. At the same time, charge in accordance with the gate voltage of the TFT **1102** is accumulated in the capacitor **1120**.

[0077] Subsequently, when this scanning line **102** becomes unselected, the gate of the TFT **1102** is maintained by the capacitor **1120** at the voltage when the scanning line **102** has been selected. As a result, the current in accordance with the voltage applied to the data line **104** continuously flows through the same path.

[0078] Even when the drain voltage of the TFT **1102** is increased due to degradation of the organic EL element **1130**, the resistance between the source and drain of the TFT **1128** is also increased that much. As a result, the voltage at the voltage dividing point Vdd-b is increased. Even when degradation of the organic EL element **1130** becomes more serious, the current flowing through the organic EL element **1130** is maintained substantially at constant. Even when the ambient temperature changes, similarly the current flowing through the organic EL element **1130** is maintained substantially at constant.

[0079] With this structure, the resistance of the resistor **1129** may be set to a large value in order to reduce or prevent power loss due to shoot-through current flowing from the power line **109** to the ground wire. The resistance of the resistor **1127** may be set to a small value in order to suppress the voltage drop. When the resistance between the source and drain of the TFT **1128** is large, the resistor **1129** may be omitted.

[0080] Needless to say, the structure in which the source voltage of the TFT **1102** is increased in accordance with the drain voltage of the TFT **1102** (voltage applied to the organic EL element **1130**) may be applied in place of the TFTs **1112**, **1114**, and **1126** in the pixel circuit **110**, although not shown in the figure.

[0081] It has been described that, in the pixel circuit **114** shown in **FIG. 6**, when the scanning line **102** is selected, the

voltage in accordance with the brightness is applied to the data line **104**. Alternatively, current in accordance with the brightness may be applied to the data line **104**.

[0082] It is regarded that degradation of the organic EL elements **1130** evenly in the entire display panel **120** becomes more serious, instead of one organic EL element becoming strikingly serious (excluding the case of color display, which will be described later). It is thus unnecessary to detect the drain voltages of the individual TFTs **1102** in all the pixel circuits (voltages applied to the organic EL elements **1130**) and to increase the source voltages of the TFTs **1102**. A detection pixel circuit may be disposed at a rate of one in a few pixel circuits. In accordance with the drain voltage of the TFT **1102** detected by this pixel circuit, the source voltages of the TFTs **1102** in other pixel circuits may be increased.

[0083] **FIG. 7** is a block schematic showing the structure of an electro-optical device including such pixel circuits. **FIG. 8** is a schematic showing the relationship between a detection pixel circuit and a display pixel circuit.

[0084] In the electro-optical device **100** shown in **FIG. 7**, the pixel circuits **114** for detecting the source voltages of the corresponding TFTs **1102** are disposed on the **0**-th row, whereas display pixel circuits **116** are disposed on the first to m-th rows. Preferably, the detection pixel circuits **114** on the **0**-th row are disposed in, for example, an area in a light-shielding layer (not shown) so that light emitted by the corresponding organic EL elements **1130** will not be detected.

[0085] Referring to **FIG. 7**, the scanning-line drive circuit **130** sequentially selects the **0**-th to m-th scanning lines **102** one at a time. The data-line drive circuit **140** applies voltage in accordance with the digital data Dpix-1 to the first data line **104**, voltage in accordance with the digital data Dpix-2 to the second data line **104**, and, from this point onward, similarly applies voltage in accordance with the digital data Dpix-n to the n-th data line **104**.

[0086] As shown in **FIG. 8**, in each column, the voltage Vdd-b adjusted by the pixel circuit **114** at the **0**-th row, j-th column is used as the source voltages of the TFTs **1102** in the pixel circuits **116** at the first row, j-th column to the m-th row, j-th column.

[0087] With this structure, in the detection pixel circuit **114** at the **0**-th row, j-th column, when the drain voltage of the corresponding TFT **1102** is increased due to degradation of the organic EL element **1130**, the resistance between the source and drain of the TFT **1128** is also increased that much. Therefore, the voltage at the voltage dividing point Vdd-b is adjusted and increased. This adjusted voltage is applied to the sources of the TFTs **1102** of the display pixel circuits **116** at the first row, j-th column to the m-th row, j-th column. Although the display pixel circuits **116** at the first row, j-th column to the m-th row, j-th column are not provided with detectors for detecting the drain voltages of the TFTs **1102** (voltages applied to the organic EL elements **1130**), current flowing through the organic EL elements **1130** is maintained substantially at constant even when degradation of the organic EL elements **1130** becomes more serious or the ambient temperature changes.

[0088] To react to changes in the ambient temperature in a more sensitive manner, at least one of the resistors **1127**

and 1129 may be replaced with a temperature detector whose resistance varies in accordance with temperature. Alternatively, such a temperature detector may be connected in series or parallel to the resistors 1127 and 1129.

[0089] Although the detection pixel circuits 114 are not used as display pixel circuits in the structures shown in **FIGS. 7 and 8**, the detection pixel circuits 114 may be used as display pixel circuits. Alternatively, instead of providing each column with one detection pixel circuit 114, each row may be provided with one detection pixel circuit. Alternatively, plural columns or plural rows may be provided with one detection pixel circuit. Alternatively, the entirety may be provided with one detection pixel circuit.

[0090] When a color image is displayed using organic EL elements emitting red (R), green (G), and blue (B) light, the degree of degradation of the organic EL elements differs from one color to another. Degradation in each color may be detected, and the source voltages of the TFTs 1102 for displaying that color may be adjusted. Others

[0091] The channel type of each TFT may not necessarily be the same as that described above. In the actual use, the p or n channel may be selected appropriately. Depending on selection of the channel type, a negative supply instead of a positive supply may be used. When a negative supply is used, voltage seen from the ground wire becomes negative. Therefore, voltage must be evaluated in absolute value.

[0092] Although the organic EL elements 1130 are described as examples of driven elements in the foregoing exemplary embodiment, inorganic EL elements, LED elements, or FED (Field Emission Display) elements may be used. Electronic Apparatus

[0093] Examples of electronic apparatus including the electro-optical device 100 will now be described.

[0094] **FIG. 9** is a perspective view of the structure of a mobile personal computer including the electro-optical device 100. In this illustration, a personal computer 2100 includes a main unit 2104 provided with a keyboard 2102 and the electro-optical device 100 serving as a display unit.

[0095] **FIG. 10** is a perspective view of the structure of a cellular phone including the foregoing electro-optical device 100. In this illustration, a cellular phone 2200 includes a plurality of operation buttons 2202, an earpiece 2204, a mouthpiece 2206, and the foregoing electro-optical device 100.

[0096] **FIG. 11** is a perspective view of the structure of a digital still camera including the foregoing electro-optical device 100 serving as a finder. A silver camera exposes film with an optical image of a subject. In contrast, a digital still camera 2300 generates an image-capture signal generated by photoelectric conversion of an optical image of a subject using an image pickup device, such as a CCD (Charge Coupled Device) and stores the generated image-capture signal. The foregoing electro-optical device 100 is placed on the back side of a main unit 2302 of the digital still camera 2300.

[0097] Since the electro-optical device 100 displays an image based on the image-capture signal, the electro-optical device 100 functions as a finder displaying an image of the subject. A light-receiving unit 2304 including an optical lens and the CCD is disposed on the front side of the main unit 2302 (back side in **FIG. 11**).

[0098] When a person capturing an image of a subject sees the image displayed on the electro-optical device 100 and presses a shutter button 2306, an image-capture signal at that time is transferred to a memory in a circuit substrate 2308 and is stored.

[0099] In this digital still camera 2300, a video signal output terminal 2312 for performing external display and a data communication input/output terminal 2314 are located on a lateral side of the main unit 2302.

[0100] In addition to the personal computer shown in **FIG. 9**, the cellular phone shown in **FIG. 10**, and the digital still camera shown in **FIG. 11**, other possible electronic apparatuses provided with the electro-optical device 100 include, for example, a digital television, a viewfinder or monitor-direct-viewing video cassette recorder, a car navigation apparatus, a pager, an electronic notebook, an electronic calculator, a word processor, a workstation, a video phone, a POS terminal, and a device with a touch panel. The foregoing electro-optical device 100 is applicable as a display unit of each of these electronic apparatuses.

[0101] As described above, according to an aspect of the present invention, even when the necessary voltage to allow a constant current to flow through a current-driven element, such as an organic EL element, changes due to degradation or ambient temperature, current generated by a drive transistor is corrected by a correction circuit. The current flowing through the driven element is made substantially equal to a target value, thereby reducing or preventing degradation of the quality of a displayed image.

What is claimed is:

1. A pixel circuit disposed at the intersection of a scanning line and a data line, comprising:

a capacitor that accumulates, when the scanning line is selected, charge in accordance with current flowing through the data line or voltage on the data line;

a drive transistor being turned ON/OFF in accordance with the charge accumulated in the capacitor, the drive transistor allowing current to flow between a first terminal and a second terminal of the drive transistor;

a driven element having one end that is electrically connected to the first terminal, the driven element being driven at least by the current allowed to flow by the drive transistor;

a detector that detects voltage at the one end of the driven element; and

a correction circuit that corrects the current flowing through the driven element in accordance with the absolute value of the voltage detected by the detector.

2. The pixel circuit according to claim 1, the correction circuit generating current in accordance with the voltage detected by the detector and adding the generated current to the current allowed to flow by the drive transistor.

3. The pixel circuit according to claim 2, the detector being a detection transistor having a gate that is connected to the one end of the driven element, the detection transistor being turned ON/OFF in accordance with the gate voltage thereof, and the detection transistor allowing current to flow between a third terminal and a fourth terminal thereof, and the correction circuit generating current associated with

current flowing between a first terminal and a second terminal of the detection transistor.

4. The pixel circuit according to claim 3, the correction circuit being a current mirror circuit that generates a mirror current of the current flowing between the third terminal and the fourth terminal.

5. The pixel circuit according to claim 2, the correction circuit inverting and amplifying the voltage detected by the detector and applying the inverted, amplified voltage to the driven element.

6. The pixel circuit according to claim 2, further comprising:

a switch having one end that is connected to the first terminal and having another end that is connected to the one end of the driven element, the switch controlling a connection between the drive transistor and the driven element when the scanning line is unselected,

the detector detecting voltage at the one end of the switch, and

the correction circuit allowing the generated current to flow through the one end of the switch.

7. The pixel circuit according to claim 1, further comprising:

a switching transistor being turned ON when the scanning line is selected; and

a compensation transistor for diode-connecting the drive transistor when the scanning line is selected,

the capacitor accumulating, when the switching transistor is turned ON, the charge in accordance with the current flowing through the data line.

8. The pixel circuit according to claim 1, further comprising:

a switching transistor being turned ON when the scanning line is selected,

the capacitor accumulating, when the switching transistor is turned ON, the charge in accordance with the voltage on the data line.

9. The pixel circuit according to claim 1, the correction circuit adjusting, when the absolute value of the voltage detected by the detector is large, voltage between the first terminal or the second terminal of the drive transistor and the other end of the driven element by increasing the voltage in terms of absolute value.

10. A pixel circuit comprising:

a drive transistor having a gate that is connected to one end of a capacitor, and a connection between a first terminal and a second terminal of the drive transistor being set in accordance with charge accumulated in the capacitor;

a driven element having one end that is electrically connected to the first terminal;

a detector that detects voltage at the one end of the driven element; and

a correction circuit including an input end to receive a signal indicating the voltage detected by the detector and an output end electrically connected to the first terminal, the correction circuit supplying current in

accordance with the absolute value of the voltage indicated by the signal input to the input end to the output end.

11. The pixel circuit according to claim 10, the detector being a detection transistor having a gate that is connected to said one end of the driven element, and the connection between a third terminal and a fourth terminal of the detection transistor being set in accordance with the gate voltage thereof.

12. The pixel circuit according to claim 11, the correction circuit including a first transistor having a fifth terminal that is connected to the gate, a sixth terminal that is connected to a power-supply-voltage feed line, and the fifth terminal being connected to the third terminal; and

a second transistor having a gate that is connected to the gate of the first transistor and the fifth terminal, a seventh terminal that is electrically connected to the first terminal, and an eighth terminal that is connected to the feed line.

13. The pixel circuit according to claim 11, the correction circuit including: a third transistor, a reference voltage being applied to the gate thereof, a ninth terminal thereof that is connected to the third terminal, and a tenth terminal that is connected to a power-supply-voltage feed line; and

a fourth transistor having a gate that is connected to the ninth terminal, an eleventh terminal that is electrically connected to the first terminal, and a twelfth terminal that is connected to the feed line.

14. The pixel circuit according to claim 10, further comprising:

a switch having one end that is connected to the first terminal, and having another end that is connected to said one end of the driven element,

the detector detecting voltage at said one end of the switch.

15. The pixel circuit according to claim 10, further comprising:

a compensation transistor that short-circuits between the gate of the drive transistor and the first terminal,

the capacitor accumulating charge in accordance with the voltage at the first terminal when the compensation transistor short-circuits between the gate of the drive transistor and the first terminal.

16. An electro-optical device, comprising:

a plurality of data lines;

a plurality of scanning lines; and

a plurality of pixel circuits as set forth in claim 1, the pixel circuits being disposed at the intersections of the plural data lines and the plural scanning lines.

17. An electro-optical device, comprising:

pixel circuits disposed at intersections of a plurality of scanning lines and a plurality of data lines, the pixel circuits including driven elements;

a scanning-line drive circuit that selects the scanning lines one at a time; and

a data-line drive circuit that supplies, when the scanning line is selected by the scanning-line drive circuit, current that is to flow through the driven element of

each corresponding pixel circuit associated with the scanning line or voltage associated with the current via each corresponding data line;

each of the pixel circuits including:

a capacitor that accumulates, when the corresponding scanning line is selected, charge in accordance with current flowing through the corresponding data line or voltage on the corresponding data line;

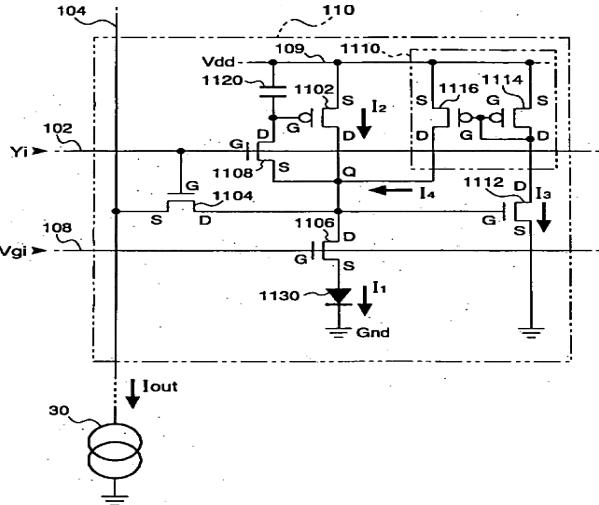
a drive transistor being turned ON/OFF in accordance with the charge accumulated in the capacitor, the drive transistor allowing current to flow between a first terminal and a second terminal of the drive transistor;

a driven element having one end that is electrically connected to the first terminal, the driven element being driven by at least the current allowed to flow by the drive transistor;

a detector that detects voltage at the one end of the driven element; and

a correction circuit that corrects the current flowing through the driven element in accordance with the absolute value of the voltage detected by the detector.

18. An electronic apparatus, comprising:


an electro-optical device as set forth in claim 16.

* * * * *

专利名称(译)	像素电路，电光装置和电子设备		
公开(公告)号	<u>US20040239661A1</u>	公开(公告)日	2004-12-02
申请号	US10/813273	申请日	2004-03-31
[标]申请(专利权)人(译)	精工爱普生株式会社		
申请(专利权)人(译)	SEIKO EPSON CORPORATION		
当前申请(专利权)人(译)	SEIKO EPSON CORPORATION		
[标]发明人	JO HIROAKI		
发明人	JO, HIROAKI		
IPC分类号	H01L51/50 G09G3/20 G09G3/30 G09G3/32 G09G5/00 H05B33/14		
CPC分类号	G09G3/3241 G09G2300/0819 G09G2320/045 G09G2300/0861 G09G2320/043 G09G2300/0842 H04B17/40		
优先权	2003095963 2003-03-31 JP		
其他公开文献	US7319444		
外部链接	<u>Espacenet</u>	<u>USPTO</u>	

摘要(译)

为了防止即使当有机EL元件劣化时通过将电流保持在恒定值而降低显示图像的质量，像素电路包括当选择扫描线时根据流过的电流累积的电容器。数据线; TFT，在选择之后，允许电流I2根据累积的电荷在TFT的源极和漏极之间流动; 有机EL元件，其阳极连接到TFT的漏极; TFT，检测施加到有机EL元件的电压，并允许根据施加的电压的电流I3在TFT的源极和漏极之间流动; 校正电路产生电流I3的镜像电流I4，并将电流I4加到电流I2上。

